Lengua electrónica que reconoce los tipos de cervezas
Científicos de la Universidad Autónoma de Barcelona han liderado un estudio que analiza diferentes marcas de cerveza gracias a la aplicación de un nuevo concepto en sistemas de análisis: La bebida alcohólica más antigua y de mayor consumo en el mundo va a ser degustada por una lengua robotizada.
“El concepto de lengua electrónica consiste en utilizar un conjunto de sensores genérico, es decir, con respuesta general a los diversos compuestos químicos implicados, que generan un variado espectro de información con herramientas avanzadas de procesamiento, de reconocimiento de pautas o incluso redes neuronales artificiales”, explica a la Agencia SINC Manel del Valle, autor principal del trabajo, publicado en Food Chemistry.
El conjunto de sensores estaba formado por 21 electrodos selectivos a iones, incluyendo algunos con respuesta a cationes (amonio, sodio), otros con respuesta aniones (nitrato, cloruro, etc.), así como electrodos con respuesta genérica (no específica) a las especies consideradas. Los autores comprobaron la respuesta multidimensional generada por el conjunto de sensores y cómo esta era influenciada por el tipo de cerveza considerado. Un primer análisis ya permitió realizar un cambio de coordenadas para visualizar mejor el agrupamiento, aunque no fue efectivo como clasificador.
“El empleo de herramientas más potentes –el aprendizaje supervisado– y el análisis por discriminante lineal sí permitió distinguir las grandes clases de cerveza estudiadas: negra, Lager, doble malta, Pilsen, Alsaciana y bajas en alcohol”, afirma Del Valle. “Y con un porcentaje de acierto del sistema del 81,9%”.
El análisis permitió distinguir las grandes clases de cerveza estudiadas con un porcentaje de acierto del 81,9%. Destacar que los tipos de cerveza no entrenadas, no las reconoce.
En vista de la ordenación de las variedades, que seguía el contenido alcohólico declarado, los científicos estimaron dicho contenido con un modelo numérico desarrollado con una red neuronal artificial.
“Esta aplicación se podría considerar un sensor por software, ya que el etanol presente no da respuesta directa a los sensores utilizados, que solo responden a los iones presentes en la solución”, subraya el investigador.
Segun el estudio, dichas herramientas pueden suministrar algún día sentido del gusto a los robots, e incluso suplir paneles de cata en la industria alimentaria para aumentar así la calidad y fiabilidad de los productos.
Este desarrollo ha atraído el interés de laboratorios estadounidenses, de hecho, se han hecho patentes conjuntas entre la Universidad de California y la Universidad Autónoma de Barcelona para su utilización.
Fuente: AgenciaSINC
Fotografía: hoytecnologia.com